The Industrial Internet of Things (IIoT) promises a world of smarter, hyper-connected devices and infrastructure where manufacturing machines, transportation systems, and the electrical grid will be outfitted with embedded sensing, processing, control, and analysis capabilities. Once networked together, they’ll create a smart network of systems that shares data between devices across and across enterprises in the cloud.
To support the new capabilities of IIoT-enabled infrastructure, designers and end users alike need reliable, remote, and secure access to smart, leading edge devices. Network technologies must evolve to satisfy the requirements of these next-generation industrial systems and radically advance the way we operate our machines, electrical grids, and transportation systems.
Existing IT networks are defined by IEEE 802 standards, which specify requirements for different Ethernet layers and functions and ensure interoperability between devices. It defines standards and protocols for wired local area networks (WLAN), metropolitan area networks (MAN) and wireless networks; defines characteristics, operating procedures, protocols and services for networks that carry variable sized packets and specifies the development and handling of compatible devices and equipment.
Today’s hyper-connected world relies on IEEE 802 Network Standards to carry out daily tasks for both work and leisure. For example, computer, smartphone, e-book reader and gaming systems are just a few of the devices containing interfaces compliant with the suite of network interoperability standards developed by the IEEE 802 LAN/MAN Standards Committee (LMSC). Just imagine all the activities we undertake on these devices and what we couldn’t do without them.
Today, industrial suppliers, IT vendors, and silicon providers are collaborating within IEEE 802 and the recently formed AVnu Alliance to update standard Ethernet protocols and provide bounded, low-latency data transfer for time-critical data in IIoT applications, because the IIoT adds stricter requirements to its local networks for latency, determinism and bandwidth.
Time Sensitive Network
Industry consortiums are now working to address this challenge using a standard called TSN (Time Sensitive Network), a real-time Ethernet solution that will become part of the open platform communications architecture in the future. Its development was originally created for in-car applications that required fast real-time communication. Ethernet has been used for automotive applications since 2008, mostly as a method for diagnostics communication and data download.
Increasingly, the large bandwidth Ethernet provides compared to other automotive in-vehicle networking technologies makes it an obvious choice for emerging applications such as camera-vision systems and infotainment systems. There is also a huge potential for Ethernet to be used for backbone network communication throughout the vehicle. This could even include safety critical applications which enable piloted and autonomous driving - a major trend in the automotive industry today.
The IEEE has now adopted it as the IEEE802.1 standard. This development brings real-time Ethernet capability to chip level to enable cost-effective edge processing solutions to be added to instruments and devices to give them real time Ethernet capability. The AVnu Alliance, working with member companies such as Broadcom, Cisco, Intel, and NI, will drive the creation of an interoperable ecosystem through certification, similar to the way the Wi-Fi Alliance certifies products and devices to be compatible with the IEEE 802.11 standard.
With further development of the IEEE TSN related set of standards, it might be possible to mimic real-time communication performance and some of the safety-related features provided by the combination of both ARINC664 and SAE AS6802, which are applied in critical aerospace applications for example.
Ethernet may also have great potential for use in the energy industry. These applications will require 802.1 to work with other organisations to help create complete standards solutions for the issues they face, such as energy efficiency. Ethernet could be part of the ecosystem that provides better overall solutions.
The new TSN standard will provide numerous benefits, but notably it would improve bandwidth, security, interoperability and latency and synchronisation, over today’s standard and specialty Ethernet protocols.
Bandwidth:
Large data sets from advanced sensing applications such as machine vision, 3D scanning, and power analysis can put a strain on network bandwidth. Proprietary Ethernet derivatives commonly used for industrial control today are limited to 100 Mb of bandwidth and half-duplex communication. TSN will embrace standard Ethernet rates (1 Gb, 10 Gb, and 400 Gb versions are in the works) and support full-duplex communication.
Security:
Most of the lower-level field buses used today achieve security through air gap and obscurity. They are influenced by the automotive industry, for which air-gapped and closed CAN networks carry all the control and operational data. But recent security breaches have exposed the need to fully extend security into the critical lower levels of control infrastructure. TSN protects critical control traffic and incorporates top-tier IT security provisions. Segmentation, performance protection, and temporal composability can add multiple levels of defense to the security framework.
Interoperability:
By using standard Ethernet components, TSN can integrate seamlessly with existing brownfield applications and standard IT traffic to improve ease of use. In addition, TSN inherits many features of existing Ethernet, such as HTTP interfaces and web services, which enable the remote diagnostics, visualisation, and repair features common in IIoT systems. As an added benefit, leveraging standard Ethernet chip sets drives component cost down by virtue of high-volume, commercial silicon, especially compared with specialty Ethernet variants that are centred on lower-volume, ASIC-based implementations.
Latency and Synchronization: TSN prioritizes the low-latency communication required for fast system response and closed-loop control applications. It can achieve deterministic transfer times on the order of tens of microseconds and time synchronisation between nodes down to tens of nanoseconds. To ensure reliable delivery of this time-critical traffic, TSN provides automated configurations for high-reliability data paths, where packets are duplicated and merged to provide lossless path redundancy.
As IIoT adoption continues, increased amounts of data and widely distributed networks will require new standards for sharing and transferring critical information. Just as an ambulance or fire engine receives priority among other traffic during an emergency, the TSN standard ensures that critical, time-sensitive data is delivered on time, over standard network infrastructure. Welcome to life in the fast lane with the IIoT.